Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Background: Nursing home (NH) residents and staff were at high risk for COVID-19 early in the pandemic; several studies estimated seroprevalence of infection in NH staff to be 3-fold higher among CNAs and nurses compared to other staff. Risk mitigation added in Fall 2020 included systematic testing of residents and staff (and furlough if positive) to reduce transmission risk. We estimated risks for SARS-CoV-2 infection among NH staff during the first winter surge before widespread vaccination. Methods: Between February and May 2021, voluntary serologic testing was performed on NH staff who were seronegative for SARS-CoV-2 in late Fall 2020 (during a previous serology study at 14 Georgia NHs). An exposure assessment at the second time point covered prior 3 months of job activities, community exposures, and self-reported COVID-19 vaccination, including very recent vaccination (≤4 weeks). Risk factors for seroconversion were estimated by job type using multivariable logistic regression, accounting for interval community-incidence and interval change in resident infections per bed. Results: Among 203 eligible staff, 72 (35.5%) had evidence of interval seroconversion (Fig. 1). Among 80 unvaccinated staff, interval infection was significantly higher among CNAs and nurses (aOR, 4.9; 95% CI, 1.4–20.7) than other staff, after adjusting for race and interval community incidence and facility infections. This risk persisted but was attenuated when utilizing the full study cohort including those with very recent vaccination (aOR, 1.8; 95% CI, 0.9–3.7). Conclusions : Midway through the first year of the pandemic, NH staff with close or common resident contact continued to be at increased risk for infection despite enhanced infection prevention efforts. Mitigation strategies, prior to vaccination, did not eliminate occupational risk for infection. Vaccine utilization is critical to eliminate occupational risk among frontline healthcare providers. Funding: None Disclosures: Nonemore » « less
-
null (Ed.)Abstract Among 353 healthcare personnel in a longitudinal cohort in 4 hospitals in Atlanta, Georgia (May–June 2020), 23 (6.5%) had severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies. Spending >50% of a typical shift at the bedside (OR, 3.4; 95% CI, 1.2–10.5) and black race (OR, 8.4; 95% CI, 2.7–27.4) were associated with SARS-CoV-2 seropositivity.more » « less
-
Abstract. Airborne and ground-based measurements of aerosol concentrations, chemicalcomposition, and gas-phase precursors were obtained in three valleys innorthern Utah (USA). The measurements were part of the Utah Winter FineParticulate Study (UWFPS) that took place in January–February 2017. Totalaerosol mass concentrations of PM1 were measured from a Twin Otteraircraft, with an aerosol mass spectrometer (AMS). PM1 concentrationsranged from less than 2µgm−3 during clean periods to over100µgm−3 during the most polluted episodes, consistent withPM2.5 total mass concentrations measured concurrently at groundsites. Across the entire region, increases in total aerosol mass above∼2µgm−3 were associated with increases in theammonium nitrate mass fraction, clearly indicating that the highest aerosolmass loadings in the region were predominantly attributable to an increase inammonium nitrate. The chemical composition was regionally homogenous fortotal aerosol mass concentrations above 17.5µgm−3, with 74±5% (average±standard deviation) ammonium nitrate, 18±3%organic material, 6±3% ammonium sulfate, and 2±2%ammonium chloride. Vertical profiles of aerosol mass and volume in the regionshowed variable concentrations with height in the polluted boundary layer.Higher average mass concentrations were observed within the first few hundredmeters above ground level in all three valleys during pollution episodes. Gas-phase measurements of nitric acid (HNO3) and ammonia (NH3) duringthe pollution episodes revealed that in the Cache and Utah valleys, partitioningof inorganic semi-volatiles to the aerosol phase was usually limited by theamount of gas-phase nitric acid, with NH3 being in excess. The inorganicspecies were compared with the ISORROPIA thermodynamic model. Total inorganicaerosol mass concentrations were calculated for various decreases in totalnitrate and total ammonium. For pollution episodes, our simulations of a50% decrease in total nitrate lead to a 46±3% decrease in totalPM1 mass. A simulated 50% decrease in total ammonium leads to a36±17%µgm−3 decrease in total PM1 mass, over the entirearea of the study. Despite some differences among locations, ourresults showed a higher sensitivity to decreasing nitric acid concentrationsand the importance of ammonia at the lowest total nitrate conditions. In theSalt Lake Valley, both HNO3 and NH3 concentrations controlledaerosol formation.more » « less
An official website of the United States government
